Freeleticsで半年間自宅トレーニングしたら食制限なしで6kg痩せた

前回の投稿からさらに四ヶ月弱経ちましたが、未だにFreeleticsを継続できています。

shiumachi.hatenablog.com


半年間自宅で運動を続けた結果、なんと体重がピーク時差分で6.2kg、7日移動平均で4.5kg減りました。画像はFitbitの体重の記録です。

f:id:shiumachi:20190915105757j:plain:w300
半年で体重6.2kg減

ジムも行かず、何かを我慢するような食制限を一切せず(食生活の変化はあり、後述)、毎朝30分程度、自宅で運動するだけでここまで痩せることができたのは自分でも驚きました。

なぜ継続できているか

「そりゃ毎日運動してたら痩せるだろ」って思うかもしれないでしょう。それはその通りで、この生活を継続できた理由が一番重要です。

理由は主に3つあります。

理由1: 時間が短い

開始から終了まで30分、ジムへの移動等の時間消費は一切なしというのが、忙しい自分の生活にとてもよくマッチしました。

理由2: 頭を使わなくていい

メニューを自動で組んでくれるので、運動に集中できます。

理由3: 楽しい

自分の記録を視覚化できるので成長を実感できます。

どういう運動をしているか

前回の記事で紹介した、Freeleticsというアプリを使って、毎朝運動しています。起きてから時間をおいて運動するときは、運動の30分から60分前にプロテインを一杯飲んでいます。そして、運動の直前にコップ一杯の水を飲んで、スタートします。終わったらシャワーを浴び、プロテインを飲みます。これ以外の運動は一切行いません。
基本的には毎日運動していますが、サボりたいときは一日ならサボっていいことにしています。その代わり、その翌日はどんなにつらくてもやります。過去の経験上、2日空くと途端に継続率が下がったと感じていたので、今回はこの2日目を頑張ってやることに注意しました。

Freeleticsで選択したジャーニー(12週1セットのトレーニングプラン)は以下の通りです。

食生活の変化

よく友人に「食制限してないの?」と聞かれるのですが、私は何かを食べるのを我慢したり、お酒を飲むのを控えたりしているわけじゃないので、自分としては食「制限」という意識はありません。なので、あえて「食生活の変化」という表現をしています。
少しづつ、3つの食生活の変更を行いました。

プロテイン

運動してから3ヶ月目くらいから、プロテインを飲み始めました。運動前後に飲む他、おやつ代わりに一日2回ほど飲むようになりました。プロテインマイプロテインというサイトで、Impactホエイプロテインを購入しています。

頻繁にキャンペーンをやっていて、特にゾロ目の日や給料日(25日前後)には40%オフなどのセールもやっていますし、一定金額以上購入すると送料無料になるため、購入するときはこうしたセール日を狙ってまとめ買いするのがオススメです。

公式サイトから購入した方が先のセールなどでかなり安くなるのでオススメです。Amazonで買うこともできますが、セール時価格からは割高になりますので、どうしてもAmazonから買いたい(あるいは別のECサイトから買いたくない)場合はあまりオススメしないです。

ストウブ

ストウブを使った無水調理を行うようになりました。ストウブは、食材を買ってきて放り込むだけで、簡単においしい料理が作れるようになる調理器具です。毎週末にストウブで鶏むね肉を3枚と野菜を買ってきて調理し、タッパーに入れて保存しています。これを一週間で消費していきます。

f:id:shiumachi:20190819181428j:plain:w300

ストウブを使うときは、下記の本とセットで買った方がいいでしょう。手軽においしい料理を作れるレシピがたくさん載っています。最初は一番上の本だけ購入し、慣れてきたら二冊目、三冊目と購入するのがいいと思います。

サラダごはん

さらに、最近はサラダごはんを食べるようになりました。野菜を何種類か買ってきて(葉物の野菜、トマト、たまねぎなど)、ゆで卵、アボカド、先程の鶏むね肉を載せ、後は好きなドレッシングをかけるという食事です。ボリュームたっぷりで、食材を変えることで全く飽きない、とてもおいしい料理です。サラダごはんは、以下の本を参考にしていますが、あまりレシピ通りに作ることはなく、その日の食材や気分で色々とアレンジしています。

ミックスサラダ

ミックスサラダ

毎日続ける やせる サラダごはん

毎日続ける やせる サラダごはん

食生活を変える

サラダごはんは作るのにそれなりに手間がかかるので、ここまでやる必要はないと思います。こうした食生活の変化を導入するなら、プロテイン→ストウブ→サラダごはんの順に取り入れるのがオススメです。

もちろん、上記のような食生活を毎日しているわけではなく、他の物が食べたくなったら普通に食べていますし、お酒や揚げ物、甘いものなど一切制限していません。食制限してストレスがかかって継続できなくなるより、長期間継続できる形を優先しています。

Freeletics 利用時のポイント

友人達からもらった質問や、自分で調べたことを元に、Freeletics を使うときのベストプラクティスをいくつか紹介します。

フォーム優先、それから速度

FreeleticsはHIITのコンセプトを用いた、短時間のトレーニングを行います。HIITの後のアフターバーン(EPOC)という効果によって、運動していない間もカロリー消費を行うことができるようになります。なので、短時間に高負荷をかけることが重要です。だからといってただ速くやるだけでは高い負荷は得られません。とにかくフォームを優先して、完璧なフォームができてからタイムを短くするようにします。

フィードバック

フィードバックは厳し目に行った方がいいです。フィードバックを元に次のトレーニングプランが組まれるので、緩めに書くと翌週からやたらときついメニューが組まれ、モチベーションを大きく下げてしまいます。

公式ヘルプに書いてある、気をつけるべき点は以下の通りです。

  • タイム計測。適当にポチポチ押してスキップすると、「すごい速さで終わらせた」とみなされて翌週の負荷が上がります。面倒でもきちんと1つのワークアウトが終わるたびにきちんとクリックして記録を取ってください。
  • 「どれだけきつかったか」「正しいフォームでできたか」。この二つのフィードバックの違いはヘルプに書いてないので詳しくはわかりませんが、おそらく前者が持久力的なフィードバックで、後者が筋力的なフィードバックではと推測しています。「正しいフォームでできたか」のフィードバックで「できた」とつけると、そのワークアウトにスターがつきますが、これは明確に「翌週の負荷を上げる」とヘルプに書いてあるので、本当に正しいフォームができたと自信を持って言えるまでは選択しない方がいいです。
  • 身長、体重、年齢(生年月日)、性別。メニュー作成に必要なので正しく入力してください。
ウォームアップ、クールダウン

レーニングで一番怖いのがケガで、その次が筋肉痛や筋疲労によるモチベーションダウンです。なので、サボらずやることが非常に重要です。

フォロワーを増やし、いいねを押しまくる

Freeleticsコミュニティは互いに褒め称え合ういい文化で、しかもそれ以上の馴れ合いもない大変ストイックな文化です。他の人がやってるのを見るとモチベーションアップにつながるし、他の人からいいねをもらってもやる気が出てくるので、積極的にフォローするのをオススメします。

自分は、主なフォロー相手は「日本でトレーニングしている人」「Lv100以上の高レベルアスリート」に絞っています。
Freeleticsはフォロワーを探す機能が貧弱なので、どういう人をフォローしたらいいかわからないという人は、とりあえず私のアカウントを検索して、そこからフォロワーをたどっていけばいいと思います。

私のアカウントは、私の名前で検索すれば以下のように出てきます。

f:id:shiumachi:20190915130204p:plain:w300

まとめ

  • Freeleticsを毎日続けたら、きつい食制限なしで半年で6kg痩せた
  • 続いた理由は、短時間で頭使わず運動できて、楽しいから
  • 食事の変化はいきなり行わず、徐々にやった方がいい。プロテインとストウブは買おう
  • Freeleticsはいいぞ!


Freeleticsを始めてみたいという人は、下記のリンクから購入すれば20%オフで買えます。 Coach と Nutrition (食生活改善)の二種類が出てきますが、Nutrition は自分は試していません。運動だけなら Coach で十分と思いますが、誰か Nutrition を試した人がいたら感想教えてください。

https://www.freeletics.com/r/124871187

14日間の返金期間がありますので、気になったら一週間くらい試してみるといいでしょう。

AIパーソナルトレーナーFreeleticsを使って、自宅で毎日トレーニングしよう

Freeleticsは、言い訳をさせないことに特化した、硬派なAIパーソナルトレーナーアプリです。とりあえず3ヶ月(15週間)続いたので、紹介してみることにします。

Freeletics: トレーニング&フィットネス
Freeletics: トレーニング&フィットネス
開発元:Freeletics GmbH
無料
posted withアプリーチ


Freeleticsは、ユーザにとって最適なトレーニングプランを提供してくれる、いわゆるAIパーソナルトレーナーアプリです。数分単位の短い時間にきついトレーニングをこなす、いわゆる高強度インターバルトレーニング(HIIT)をベースにしています。

長所1: 部屋の中でできる

2m * 2m のスペースさえあれば、部屋の中でトレーニンができます。感覚的には、0.9m * 1.8m のヨガマットを引き、その上に立った状態で自分の腕を自由に振り回せるくらいのスペースです。
ヨガマットは買った方がいいです。自分の体と床の両方を傷つけずに済みますし、階下への振動を押さえるためにも必要でしょう。
私は、定番のALINCOのマットを使ってます。

ALINCO(アルインコ)  エクササイズ フロアマット 厚さ 9mm EXP150 (フロア保護 トレーニングマット両用)

ALINCO(アルインコ) エクササイズ フロアマット 厚さ 9mm EXP150 (フロア保護 トレーニングマット両用)

外に出なくていいということは、身支度を一切する必要がないということです。簡単なスポーツウェアを着るだけでいいので、気軽にスタートできます。
例えば、スキッピングジャンプ(要するに足踏み)は基本的な運動の一つですが、このような感じでその場でできる運動が揃っています。

長所2: 時間が短い

ウォーミングアップとクールダウン含めて20-30分程度で、一番きついメインのトレーニングは5-10分程度。短い場合は3分で終わります。
近所のジム行ってちょっと運動して帰ってきたり、ランニングしたりしても、移動時間や着替えなども含めて1時間はかかることを考えれば、圧倒的に時間が短いです。

長所3: 自分だけのトレーニングメニューを作ってくれる

ウェイトトレーニングをやると、どうしても「次に何をするか」を考えながらやらなければならず、それが結構面倒と思っていましたが、Freeleticsを使えばメニューは全部自分用に作ってくれるのでレーニングメニューを考える必要がありません
今日は腹筋メインだったので明日は足メインのメニューなど、ちゃんと順番を考えて作ってくれます。
面白いのは、ウォーミングアップもその日によって変えてくれるので、飽きがきません。

長所4: 言い訳させない

今日は時間が15分しかない、出張中なので器具がない、など色々な「言い訳」に対応してメニューを変えてくれます。とにかく「言い訳させない」ことを目的しているのがよくわかります。
もし筋肉痛だったとしても、その部位を使わないという選択ができます。「諦めるという選択肢はありません」というキャッチフレーズの通り、言い訳させない仕組みがたくさん備わっています。

欠点

もちろん良い点ばかりでもありません。私が気になった点をいくつか挙げておきます。

  • 過去のデータを見返したいときのUIが貧弱。
  • アプリでしか見れず、PCでログインはできるがほぼ無意味。
  • アプリとしては日本語対応してるが、先述のクーポンを配ってもグッズがもらえるキャンペーンが対象外だったり、EU/US以外でのマーケティングが貧弱。
  • 日本でやってる人がほぼいないので情報がほとんどない

価格

年間1万円。自分としてはトレーニングジム行くことに比べたら圧倒的に安いと感じたので即購入しました。14日間の返金期間がありますので、気になったら一週間くらい試してみるといいでしょう。

2019/05/25時点で、50%オフのキャンペーンをやっているようです。いつまで続くかわからないので、気になるのなら思い切って購入してもいいと思います。

(2019/05/27 追記) 上記のキャンペーンはWebからの購入のもののようです。 App Store 経由だと30%オフになっているようです。 ( @chidakiyo さん、情報提供ありがとうございます)

(2019/05/30 追記) 6周年記念で、なんと60%オフになっています!この価格なら、文句なしにオススメですので試してみてください!

(2019/06/01 追記) キャンペーンは終了したようです。(Webサイト上では見えなくなっていました)


レーニングの流れ

コース選択

コースタイプを6種類から選びます。一番の初級のみ6週間コースですが、他は全て12週コース。
(2019/06/05 修正) 最初に、運動の目的について質問されますが、その選択内容によって推奨されるコースが変わります。私が選んだ場合では以下の6種類が表示されました。
このコースは、ダイエットしたいという人から筋肉をつけたいという人まで、色々な目的に合わせることができます。
私が表示されたもの以外の全てのメニューについては後述します。


目標選択画面

初級編: スタートストロング



カロリー燃焼



バランス燃焼



筋力&スタミナ



筋トレダイエット



ハイブリッド筋力





(2019/06/05 追記) Freeletics のヘルプに、コース一覧があったので簡単にまとめました。

Choose your Freeletics Training Journey – Help Center


ダイエット目的

レーニングコース名 有酸素運動 筋力 コース期間 説明
スタートストロング/Start Strong □□ □□ 6週間 初級者や長期間運動してなかったけど復帰した人向け。インターバルトレーニングメインで、持久力と筋力を手に入れるのが目的
カロリー燃焼/Cardio Burn ■■■ □□ 12週間 初級者や長期間運動してなかったけど復帰した人で、易しめの運動でレップ数多めで、有酸素運動メイン。ライフスタイルを変えるのが目的
バランス燃焼/Balanced Burn ■■ ■■ 12週間 有酸素運動と筋力トレーニングがバランスよく混ざっている。易しめでレップ数多めの運動と、難しくてレップ数少なめの運動が混在。ダイエットの目標体重達成を支援するのが目的。
筋トレダイエット/Shred & Burn □□ ■■■ 12週間 筋力の限界を試し、脂肪の最後の一絞りを実現し、6つに割れた腹筋を獲得するためのコース。難しくてレップ数少なめの運動がメインで、爆発的な筋力トレーニングも含み、しばしば難しい高強度のトレーニングが含まれる。懸垂バー推奨


運動目的 (あるレベルのスポーツの経験やトレーニング経験があり、運動能力を高めていきたい人向け)

レーニングコース名 有酸素運動 筋力 コース期間 説明
Fit For Life ■■ ■■ 6週間 Freeleticsの基礎を学び、身体を若く活動的に保つためのコース。比較的低強度の運動と短時間のメニュー。ランニングありを推奨
Legs, Curves & Core ■■ ■■ 12週間 (女性向け) 脚とお尻と体幹の運動をメインとした、強靭でパワフルな引き締まった身体を作るためのコース。レップ数多めのインターバルトレーニングで、引き締まった体型を手に入れるのが目的。
Active Endurance ■■■ □□ 12週間 持久力とスタミナを試すための、速いペースの有酸素運動メインのコース。スプリント&ランニング推奨。
筋力&スタミナ/ Strength & Stamina ■■ ■■ 12週間 有酸素運動と筋力トレーニングがバランスよく混ざっている、全身運動のコース。健康的なライフスタイルを維持するのが目的
Everyday Strength □□ ■■■ 12週間 技術的に高難易度の運動を行い、筋力の限界を試すためのコース。レップ数少なめで爆発的な筋力トレーニングがメイン。しばしば難しい高強度のトレーニングが含まれる。懸垂バーを強く推奨
Freeletics Hardcore ■■■ ■■■ 8週間 十分な経験を積んだアスリートが、身体的・精神的な困難に立ち向かうためのコース。上級者向けの高強度の運動を含む。このコースのみ、最終週はクールダウンのためそれまでの週よりも軽くなる(Hell Weekがない)。懸垂バー必須

筋トレ目的

レーニングコース名 有酸素運動 筋力 コース期間 説明
Explosive Strength ■■ ■■ 12週間 技術的にも身体的にも難易度の高い運動と、高強度の有酸素運動の混ざったコース。懸垂バーを強く推奨
Everyday Strength □□ ■■■ 12週間 筋力の限界を試すためのコース。レップ数少なめで爆発的な筋力トレーニングがメインで、最後の1レップを絞り出すのが困難なトレーニングを含む。懸垂バーを強く推奨
コースの実施

週のはじめにメニューを決めます。毎週何日トレーニングするかを選ぶことができます。
また、利用可能な器具(懸垂バーなど)も選ぶことができますので、自宅に懸垂バーがある人も安心です。



1日のメニューにはウォーミングアップからクールダウンまで含まれているので、寝起きにいきなり開始できます。
もし時間がない場合や出張中でいつもと環境が違う場合でも、右下のCボタンを押すことで、その日だけの特別メニューに変更されます。

一つのワークアウトを完了すると、フィードバックを送ることができます。どれだけきつかったかを5段階評価で、正しいフォームでできたかを5段階評価で送ります。フィードバックの結果は翌週のメニューに反映されます。
12週間(初級のみ6週間)の最終週はヘルウィークが待っています。この週は毎日(つまり7日)連続でトレーニングしなければいけません。といっても、トレーニングの負荷そのものは通常時とさほど変わらないので、名前に反してそこまで怖いメニューではないです。


12週間のコースが終わると、また最初に戻り、5つのコースタイプから選んでいきます。

まとめ

Freeleticsは硬派なデザインで、飾りっ気はありませんが、毎日運動を継続させるための工夫が行き届いていて、とても気に入ったアプリです。
忙しいけど効率よく運動する習慣をつけたい、という人は試してみる価値はあります。

Freeletics: トレーニング&フィットネス
Freeletics: トレーニング&フィットネス
開発元:Freeletics GmbH
無料
posted withアプリーチ

2019年GWに読んだ本

とりあえずざっと読んだ程度で、細かくは読んでいません。内容の理解が間違っている可能性がありますのでご注意ください。


高次元の統計学 (統計学One Point 11)

高次元の統計学 (統計学One Point 11)

d次元のデータについて標本数nのとき、従来は n >> d を仮定していたが、この本では d >> n を仮定しています。
例えば10000次元のデータでサンプル数100とかのケース。
これを分析するのに、標本共分散行列ではなく双対標本共分散行列というのを使うというのがメインの手法です。
d x d 次元の標本共分散行列の固有値固有ベクトルを、 n x n 次元の双対標本共分散行列の固有値固有ベクトルから計算できるということを最初に紹介しています。

従来のPCAは本書で書かれているようなデータには適用できないので、本書ではノイズ掃き出し法(ベクトルの各次元のパラメータが互いに独立)とクロスデータ行列法(互いに独立と仮定できない場合)という2つの手法を紹介しています。
高次元ベクトルにおける平均ベクトルの推定も説明されています。さらに、高次元データに対する二値分類の方法も紹介しています。
私の扱うデータではこの手法を活かせる機会がかなり多そうなので、どこかで試してみようと思いました。


全くの初学者向けなのに、Dockerでコンテナ起動するとこから始めるし、チャットボットのアプリをローンチするためにテキスト解析回り(MeCabとか正規表現とか)をやったりWebアプリを作るためにDjangoJQueryに触ったりと、意図してたくさんのライブラリやツールに触れさせる作りになっていて、なかなかおもしろい本でした。
とはいえ自分は初学者ではないので、誰かこれからPython始めたいという人でこの本を読んだ人の感想を聞いてみたいものです。


統計解析が主体で、機械学習等の流行りの技術の話はあまり出てこないですが、従来の商品売買の分析ではなくサービスの分析というところに主体を置いて概要を説明するというスタンスの本なので、切り口が違って面白いです。
アンケート結果からの統計解析から始まり、6章ではベイジアンネットワーク分析を紹介しています。
全くの初学者向けの入門書ではなく、既に他分野である程度の知識がある人向けの入門書になっていて、内容はそこそこ高度な割に、実際に使えるようなテクニックが書いているわけじゃないので、人によっては役に立たない本って判断するような書籍かもしれないです。
内容的には「きちんとした、サービスデータの解析についての有料まとめブログ記事」に近い感じです。

私の場合、まさにこの分野の解析手法について知りたかったのでとても有益な本と感じました。


人気の本だけあって、非常にわかりやすいいい本でした。
グラフの使い方とかも書いてあるのでダッシュボード作成とかの参考にもなりそうです。


ペーパープロトタイピング 最適なユーザインタフェースを効率よくデザインする

ペーパープロトタイピング 最適なユーザインタフェースを効率よくデザインする

これを真面目に実践しようと思うと、想像以上に手間がかかって、簡単なデモアプリとかだと、この手間より普通にアプリ作った方が早そうな気がしてきます。
とはいえ、手法としてはとても面白いので、どこかで試してみたいです。

今年はラグビーワールドカップもあるということで、読んでみたラグビー漫画。手にとってから初めて、「ここから今は倫理です。」と同じ作者の作品だと気づきました。

「ここから今は倫理です。」は、独特な雰囲気の教師漫画でしたが、ALL OUT!!は正統派のスポーツ漫画。絵にクセはあるので好みは分かれるでしょうが、この作者の勢いのある表現は私はとても好きですね。

面白いなと思ったのは、コーチや教師目線のエピソードが結構散りばめられていることです。自分も年なのか、こういう高校生のスポーツものを見ると保護者視点で見るようになってきて、そういう自分にはこの視点はとても興味深く感じました。

なので、個人的に一番好きなエピソードは、8巻のコーチ・顧問による飲み会の回ですね。

指導者は常に、子供を驚かせる張本人じゃなきゃならない。……突然、海に連れてったりしなさい。突然、相撲させなさい。もちろん明確な意図を伝えてね。"この人についていけば、なにか起きるかも"って思うだけで、意外とみんなついてきてくれるもんですよ。
(ALL OUT!! 8巻 p159-161


17歳の日本人の少年を主人公にした、アイスランドでの生活と人々とのやりとりを描く漫画。一応ストーリーがあったり、主人公の少年が機械の心を読み取れる超能力者だったりしますが、メインはなんといってもアイスランドの紹介で、とてもいい観光漫画です。

データサイエンスレガシーコード

Repro Tech Meetup #7 にて、「データサイエンスレガシーコードに立ち向かう」というタイトルで講演しました。



データサイエンティスト全てというわけではありませんが、データサイエンスのコードは試行錯誤の連続であり、様々な手法を連続して試すことを考えると、最初からきちんとテストを書いた保守性の高いコードを書く、というのはそう簡単ではありません。

しかし、そうした試行錯誤を経て出来上がったデータサイエンスのコードを、「動いているから」という理由でそのまま実戦投入していくケースを目にしたことある人はいるのではないでしょうか。

このような状況に直面したとき、私が思い出したのは、10年前の、あるプロジェクトのことでした。


当時の私はある社内システムの開発に携わったのですが、既存コードには一切テストがなく、かなりの分量の改修が必要で、そして期日が迫っている、という状況でした。

このとき私のバイブルとして助けになったのが、「レガシーコード改善ガイド」でした。


レガシーコード改善ガイド (Object Oriented SELECTION)

レガシーコード改善ガイド (Object Oriented SELECTION)


まさか10年経ってからこの本を再び開くことになるとは思いませんでした。しかし、そこに書かれている内容は、まさに今の私にとって役に立つ内容ばかりでした。


この本の冒頭には、以下の一文が記されています。

レガシーコードとは、単にテストのないコードです

この一文を読んで、私は「データサイエンスレガシーコード」という言葉を思いつきました。


データサイエンティストの考えたモデルがもし本当に有用であれば、コードはきちんと整備され、あるいは書き直されることになるでしょう。しかし、そうなる前の段階、つまり、データサイエンティストの頭の中から一歩踏み出した状態は、保守性の低い、レガシーコード同様となっていることが多いでしょう。このようなときに、この古い書籍は大変役に立ちます。


とはいえ、この本で取り上げている例やツールは現代から見ればかなり古く、また、コードもJavaC/C++で書かれているため、私が使うPythonの世界にはそのままでは適用できません。

Pythonでテストを書くための本として、テスト駆動Pythonがあります。この本は2018年に出たばかりの新しい本であり、内容もわかりやすく、Pythonでテストを書くのに慣れていない人にとってはかなり有益な本でしょう。


テスト駆動Python

テスト駆動Python


ソフトウェアエンジニアと違い、短期間のうちに様々な小さいコードを実装しなければいけないソリューリョンアーキテクト(あるいは、プリ・ポスト含む全てのフィールドエンジニア)がよく口にするのは、「テストなんて書いている時間がない」というものですが、テストを書けば、バグ探しや確認作業のための工数が減り、改修作業のときの手戻りを減らし、同僚や他プロジェクトで自分が書いたコードが再利用されるときに発生する質問や支援依頼もぐっと減り、その結果、自分の時間を大きく節約することができます。なので、私は小さなコードであってもなるべくテストは書くべきと考えています。


テストを忌避する理由として考えられるのは、推測ですが、「テストが品質向上のためのものであり、テストを書くには分岐網羅などを全て行った、カバレッジの高いものにしなければいけない」という考えがあるからでは、と思っています。私は、特にソリューションアーキテクトのような立場でコードを書く場合のテストは、単に確認作業の自動化くらいの意味合いで考えれば問題ないと考えています。普段自分が実行しているコマンドや作業を自動化するというくらいの軽い気持ちでテストを書くだけで、必要最低限のテストでの保護は可能となります。そしてそのためのテストコードは数行で書くことができます。


新しいアイデア、素晴らしい機械学習モデル、こうしたものを作ることそのものは確かに誰にもできないことであり、その業績は褒められるべきものです。しかし、せっかくのその傑作を素早く広めていくには、保守性の向上は常に考える必要があります。そのためにも、テストがないコードにテストをかぶせていく手法を学ぶのはとても有益と考えています。


テストの話とは外れますが、こうした発想がソリューションアーキテクトという仕事において有益である、という話を、4/24(水) 開催の SA Night #1 で少しだけ触れますので、興味がある人は是非ご参加ください。

健全な危機感と過剰な成功体験の危険性

先日、あるお客様を訪問しました。そのお客様はかなり先進的な企業で、社員の方達の能力も高く、企業の業績も大変良好なのですが、そのお客様はとても印象深い一言をおっしゃっていました。

「確かに我々は日本では先進的だと言われているようだが、グローバルの企業に比べれば足元にも及ばない。なんとかしないといけない」

この言葉に、私は非常に驚きました。今まで多くの優れた企業の方とお会いしてきましたが、トップ企業の方で、社員レベルでここまでの危機意識を徹底されている会社は多くありません。

もう10年ほど前になりますが、大学のある先輩がある企業に就職した後、一度会う機会があって、そのときに聞いた話を思い出しました。その先輩が勤めている企業は、日本を代表する有名な企業でしたが、デジタル化の波に飲まれて主要事業が急激に縮小するも、新しい事業を次々に創出して生存に成功した企業でした。その先輩と話をしたのは、ちょうどその業績回復で話題になっていた頃でしたが、そのときその先輩はこのような話をしていました。

「とにかく危機感がすごい。誰一人として、このままでいいとか思っていない。新しいことはすぐに始めるし、自分みたいな若手にも仕事はバンバン任せてくれる」

多くの会社では、社内外に向けて鼓舞するようなメッセージを発信します。自分たちはすごい、自分たちはできる、自分たちは偉大だ、といったようなメッセージです。当然ながら、会社というのは常に様々な危機や試練がつきまとうので、士気の向上のために、こうしたメッセージは重要と思います。

では、もし本当にうまくいってしまったら、その後はどうなるのでしょう?自分たちはすごい、ということを本当に証明してしまったら?私はここに一つの落とし穴があるのではと考えました。成功体験に基づく自尊心は、その後の失敗に対して正常に対処できなくなるのでは、と、ふと思いました。

もちろんこれも難しい話で、危機感を煽るばかりだと、「この会社本当にヤバイんじゃないか」と勘違いする人が出てきて、退職者が続出したり、いい人材を採用できなかったり、株価に影響を与えたり、と、ネガティブな効果ももちろん少なくないでしょう。しかし、健全な危機感を抱き続けるというのは、特に予定通りに計画が進まなかった場合に問題解決に柔軟になれるのではないか、と思いました。

では、どうすれば健全な危機感を抱き続けることができるのでしょう?一つは、適切な高いゴールを決めることではないかと思います。ハードルが低すぎては成功体験が過剰になってしまい、ハードルが高すぎては誰も真面目にそのゴール達成を考えなくなるでしょう。しかし、ゴール設定だけでは健全な危機感を持つというのは難しそうな気がします。そもそも、健全な危機感とはどのようなものか、まずこの定義を明確にする必要があるでしょう。いずれにせよ、まだ自分の中で答えの出ていない話です。

関連書籍

こうした、失敗から学ぶという書籍は何冊か読んだことがあります。そのうちの一冊、「名経営者が、なぜ失敗するのか?」は面白い本ではありますが、あくまで経営者視点の話で、現場の意識のような話には言及していません。

国家の失敗というテーマで有名な書籍としては、「失敗の本質」や「大国の興亡」がありますが、いずれも組織論、あるいは大組織に関連する機能についての言及が主体で、やはり現場の意識という観点ではあまり言及はされておりません。(いずれも名著なので本件とは別に読む価値はあります)

転職エージェントの活用法

この記事は pyspa Advent Calendar 2018の10日目の記事です。前日は
放送大学と調べ物と私 - rokujyouhitoma's blog
でした。

私がClouderaを退職し、Luminoso Technologies(日本法人名: ルミノソジャパン合同会社)に転職したことは既に書いた通りですが、この転職は転職エージェントのヘッドハンター経由で行ったものでした。

外資系IT企業のヘッドハンターと言えば、スパムのようにメールを送ってきたり、名前を間違えたり、職場にいきなり電話してきたりと悪評は留まるところを知りませんが、今回利用させていただいた中で活用のメリットというのが見えてきたので、私のエピソードとともに共有します。

ヘッドハンターを活用した転職エピソード

ClouderaがIPOした後、会社としては一区切りもついたことだし、現状に不満は特になかったものの、その先のことも考えなければと思い、面白そうな仕事や技術のトレンドなどをゆっくりと探していました。そんな中、あるヘッドハンターからのメールが目に止まりました。

大半のヘッドハンターが大企業の案件を紹介してくる中、そのヘッドハンターだけは見たことも聞いたこともない企業名を挙げてきました。しかも、北米のスタートアップと書いています。興味が湧いたので、会ってみることにしました。

そのスタートアップ自体は話を聞く限りあまり興味の引かれる案件ではなかったものの、そのヘッドハンターは、海外のスタートアップの案件を持っているそうなので、ものは試しにと思い、好き勝手な条件をつけて、この条件を満たした企業があったら話を持ってきてください、とお願いしました。
主な条件は以下の通りです。

  • 自然言語処理に関係があること
  • botに関係があること
  • 立ち上げ、あるいはそれに準ずるフェーズであること
  • 勤務地は東京であること

もともとpyspaの中で俳句botというものを作っていた関係もあり自然言語処理botの世界にはとても興味を持っていました。しかし、自分の知る限りではこの二つを結びつけてビジネスを成功させている企業は一社もなく、とても仕事になるとは思っていませんでしたが、せっかくなので自分のやりたいことを現実性度外視でぶつけてみることにしました。上記以外にも給与等の様々な条件をつけましたが、正直そのヘッドハンターがその条件に合致した案件を持ってくることはあまり期待しておらず、当たればラッキーくらいの軽い気持ちで条件を提示していました。

それから一年後、そんな話をすっかり忘れていた私の元に、一通のメールが届きました。読むと、その会社は自然言語処理に関係があり、botに関係があり、日本での立ち上げメンバーを探している、ということでした。私が提示した条件にほぼ合致していた案件を、そのヘッドハンターは持ってきたのです。

私もこちらが出した条件を満たした案件を持ってきてもらった以上、会わないのでは義理が立たないので、とりあえず会ってみることにしました。

以上が、私が Luminoso と出会った経緯となります。

(余談になりますが、Luminosoはあくまでデータソースの一つとしてchatbotを扱えるというだけで、別にbotの会社ではありませんでした)

ヘッドハンターの活用についての教訓

今回わかったこととしては、未知の業界や未知の分野、未知の職種・職位など、自分が行ってみたいもののツテも何もない、という場合にヘッドハンターを活用することには大きな意味があるということです。ヘッドハンターなしには、私はLuminosoという会社を知ることすらなかったでしょう。
一方、もし既存の技術や職種の延長上での仕事を探したり、よく知った人物と一緒に仕事したいなど、既知の領域での転職を考えているのであれば、ヘッドハンターの活用はあまり有効ではないでしょう。そもそも、全く知らない会社に転職するというのは大きなリスクを伴うものです。私のように、よほど未知の世界に興味がない限りは特に使う必要もないと思います。
また、今すぐにでも転職したい・しなければならない場合などは、一見ヘッドハンター経由だとすぐに仕事見つかりそうな気もしますが、上記の通り全く知人のいない会社への転職はリスクがある上に、転職への焦りからつまらない仕事を選んでしまう可能性もあるため、私としてはあまりおすすめはしません。余裕のあるときに会っておくのが一番いいと思います。

ヘッドハンターの活用法

これはすごく簡単で、以下の3つを実施するだけです。

  • 会って話する
  • 自分の要望を好き勝手に告げておく
  • 放置する

先述の通り、なるべく余裕のあるときに実施しておいた方がいいです。本当にいい案件が来たときだけ話を聞けばよく、そうでなければ普通に現職の業務を続ければいいからです。
要望については、「5000兆円ほしい」でもなんでもいいので、とにかく好き勝手言っといて問題ないです。条件に合致しなければ放置されるだけだし、デメリットは一切ありません。

おまけ: ヘッドハンターとスパムメール

「ヘッドハンターからのメールってテンプレで大量に投げたり、たまに名前間違えて投げてきたりするじゃないですか?あれほとんどの人がスパムフラグ立てて読んでもいないから、もうちょっと丁寧に投げた方がいいと思いますよ」

という話をしたらとても驚いていて、そんな風に扱われているとは知らなかったとショックを受けていました。普段からたくさんの案件を同時並行でやる傍ら大量のメールを送っていて、自分でもそうした問題に悩んでいたのですが、さすがにスパム扱いは衝撃だったようです。

今回の転職活動の中でヘッドハンターの仕事というのも知ることができたし、何より担当したヘッドハンターは素晴らしく協力的で大変助かったという恩もあるので、今後はスパム扱いするのは少し控えようと思いました。

……が。


全てのヘッドハンターのメールからスパムフラグを外すのはまだ当分先の話になりそうです。


pyspa Advent Calendar 2018、明日は taichi です。

ルミノソジャパン合同会社に転職しました

2018年12月3日付で、Luminoso Technologies Inc. の日本法人である、ルミノソジャパン合同会社のソリューションアーキテクトとして勤務を開始しました。

この会社は、自然言語理解のためのMITスピンアウトのスタートアップです。まだ全世界で数十名しかおらず、日本では私と代表の2名のみの会社です。

Luminosoを使うことで、お客様のお問い合わせ記録のテキストからお客様の声を抽出したり、口コミなどの解析から迅速な製品の改善に繋げることが可能になります。

これだけ聞くとあまり目新しくないように見えますが、Luminosoの特長としては、こうした結果を、辞書も不要で、かつ少量のデータだけで実現できるということです。NLPの本番導入の大きな壁の一つであった、辞書管理やデータ管理をスキップすることで、導入コストと時間を大幅に削減することができます。

詳細については以下のページをご覧ください。

プレスリリース: https://www.atpress.ne.jp/news/159774
日本語webサイト: https://www.luminoso.jp/

では、なぜこの会社に入社することに決めたのかを説明します。

もう一度ゼロからスタートする

7年半前に入社したClouderaも、入社当初は70人ほどの会社で、日本はまだオフィスすらない状況でした。それから大きくなっていくに従い、会社の規模だけでなく製品の機能や、会社としてできることの数が大きく増えていきました。それはそれで楽しいことでしたが、同時に「このまま成功の波に乗り続けるだけでいいのか」とも考えていました。自分はたまたま運がよかっただけでであり、その幸運の上にあぐらをかいていていいのか、と考えました。そこで、リセットしてもう一度最初から始めてみることにしました。

会社の規模が小さいというだけではありません。自分がNEC時代から含めて8年半以上学んできたHadoopエコシステムの知識や経験も置いてきました。Luminosoでは一切Hadoopは用いていません。その代わりに、これからは自然言語処理の技術を学んでいくことになります。

もともと自然言語処理に興味があり、既に何冊かの本を読んで学んだとはいえ、この分野ではまだ素人同然です。Cloudera時代のように専門家気取りでえらそうなことを話せば、真の専門家達から袋叩きにされることでしょう。初心にかえって、一から勉強し直します。

また、技術だけでなく、自分の築き上げた人脈も置いていきます。通常、外資系の転職の場合、会社が変わっても人間関係を全部変えることは非常に稀で、一般的な日本企業よりも長期にわたって「仲間うち」で仕事する人も多いです。こうした人のつながりも置いてきました。Luminosoには、少なくともLinkedInで調べた限り、元Clouderaの人間は一人もいません。全員が初対面です。

このように、会社規模、技術と経験、人間関係、全てをゼロに戻して最初からスタートすることにしたのが今回の転職です。

データ基盤からデータ活用サイドへ

データ基盤は十分に普及したものの、データの活用方法について悩んでいるというお客様を前職では数多くみてきました。そこで、次はデータを活用する側にとって役立つようなことがしたいと常々考えていました。Luminosoは、データ基盤ではなく、データを活用する側の技術ですので、私のやりたい方向性と合致していました。

オープンソースからオープンデータへ

Luminosoは、もう一つ大きな特徴があります。ConceptNet というオープンデータをメンテナンスし、これをコアコンポーネントとしていることです。

http://conceptnet.io/

10年以上オープンソースで仕事をしてきて、オープンソースビジネスというものの将来性については十分に理解をしていたものの、オープンデータを核として成功した企業というのは聞いたことがありませんでした。これが、私がLuminosoに興味を抱いたもうひとつの理由です。

未来は誰にもわからない

この会社が成功するかどうか、私にはわかりません。入社して早々に買収されるかもしれないし、突然大企業が競合製品を発表して息の根を止めにかかってくるかもしれません。私自身ももしかしたら半年後にクビになるかもしれません。でも、だからこそ挑戦してみたいと思いました。一年後どうなっているか予想できる仕事より、一年後どうなっているのか全くわからない方が、自分には合っています。

まずは第一日目が終わりました。これから自分がどうなっていくのか、本当に楽しみです!